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Abstract

This paper presents an approach for modelling and control of fed-batch yeast growth which requires extensive calculation and a small
number of measurements of component concentration. The process model is based on a simplified biochemical reaction description. An
adapted predictive control algorithm is based on this model. It provides the future manipulated variable by analytical calculation, avoiding
numerical optimisation methods. Experimental performance of this approach is shown for the control of ethanol production during fed-batch
growth ofSaccharomyces cerevisiaeon an industrial pilot plant. © 2000 Elsevier Science S.A.
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1. Introduction

Control of biochemical processes has become an active
area of research in recent years. Much attention has been
drawn on control of discontinuous bioreactors because of
their prevalence in industry. However, this still remains
a more difficult task compared to continuous processes
because of the transient operation conditions. Moreover,
evolution of state variables is often non-linear. Therefore,
modelling and control of biochemical processes has been
subjected to quite sophisticated methods like extended
Kalman filters [1], neuronal networks [2] and fuzzy logic [3].
In addition to intensive off-line or on-line calculation, they
often require comprehensive measurements of component
concentration [4] which will probably not be available on an
industrial scale. Therefore, this paper presents an approach
for modelling and control that requires extensive calculation
and a small number of measurements of component concen-
tration. The process model is derived from prior knowledge
of main system behaviour and is reduced to the represen-
tation of essential process features as described in Section
2. It is then introduced in a predictive control algorithm
(Section 3). The control algorithm is adapted to the specific
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approach. Section 4 shows the results obtained on control of
fed-batch growth ofSaccharomyces cerevisiae. The classi-
cal control strategy of yeast growth consists in maintaining
maximum productivity and preventing ethanol formation
by supplying the flow of sugar that keeps the respiratory
quotient close to a value of 1 [6]. This means that sugar is
used for growth in an optimal way without too much carbon
dioxide exhausting the reactor. The respiratory quotient is a
sensitive indicator for ethanol production. High values are
reached as soon as ethanol is formed in the medium.

A different strategy will be applied in this work, explicitly
aiming on the formation of ethanol during yeast growth.
Hereby, according to the bottle-neck theory of Sonnleitner
and Käppeli, a high productivity of yeast growth is ensured if
the ethanol concentration is kept at a constant low value. The
objective of this work is to control the production of ethanol
during fed-batch yeast growth, so that the measured ethanol
concentration in the liquid holdup matches the set-point. The
set-point value will be fixed on-line by the control algorithm
with respect to process state. At the beginning of a batch
no control action is taken and sugar is fed according to a
predetermined profile based on experience. The control loop
is closed after a certain period of time when the activity
of yeast in the reactor is sufficiently high. This is detected
by a supervisory routine of the controller, by analysing the
ethanol production rate. Then the set-point is set equal to
the measured value of ethanol concentration at this specific
point of time. In a final stage of culture growth the flow
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rate of sugar will be decreased in such a way that sugar
and ethanol are oxidised simultaneously, leading to entire
consumption of ethanol at the end of culture growth. Hereby
the overall yield of transformation from substrate into yeast
is improved. Finally the experimental performance of the
proposed approach is discussed in Section 5.

2. The process model

The aim of the process model is to give a quantitative re-
lationship between the production of ethanol (model output)
and a certain number of process measures (model input).

Kinetics of S. cerevisiaecan be described by the model
of Sonnleitner and Käppeli [5]. This model subdivides into
three major physiological activities:
• production of biomass (R1)
• production of ethanol (and biomass) (R2)
• oxidation of ethanol (R3)

They can be expressed by the following reaction scheme:

C12H22O11 + γ5,1NH3 + γ6,1O2

→ γ1,1Bio + γ2,1CO2 + γ4,1H2O (R1)

C12H22O11 + γ5,2NH3 + γ4,2H2O

→ γ1,2Bio + γ2,2CO2 + γ3,2C2H5OH (R2)

C2H5OH + γ5,3NH3 + γ6,3O2

→ γ1,3Bio + γ2,3CO2 + γ4,1H2O (R3)

According to the bottleneck theory of Sonnleitner and Käp-
peli sugar in the mixture will be preferably consumed by R1
up to the bottleneck-limit imposed by the respiratory capac-
ity (maximal specific oxygen uptake rate). Any surplus flow
of sugar will be metabolised via R2. In addition, the ethanol
formed via R2 can also be metabolised oxidatively via R3,
if the sugar supply does not exceed the bottleneck-limit. In
the original paper Sonnleitner and Käppeli argue that, due
to diauxic latency, sugar and ethanol could not be consumed
simultaneously. Experimental evidence has shown that for
certain strains ofS. cerevisiaethis is not the case [7]. So, in
terms of productivity, a policy which allows the production
of ethanol followed by a reconsumption of this metabolite
could be competitive with classical ‘sugar only’ one.

Since the objective of this work is to control the concen-
tration of ethanol at a constant value during yeast growth it
will be supposed that supplied sugar:
• always exceeds the bottleneck-limit.
• is metabolised via R1 and R2 simultaneously.
In this case it has been shown that sugar uptake can be
considered to be instantaneous [7] and the partial material
balance of sugar is the following algebraic equation:

n7 = n7,1 + n7,2 (1)

In order to determine the coefficientsgi,j , measurements of
ethanol, carbon dioxide and oxygen concentration as well
as sugar flown7 are supposed to be available continuously.
Hence, the following partial material balances can be de-
rived:

carbon dioxide :γ2,1 ∗ n7,1 + γ2,2 ∗ n7,2 = n2 (2)

ethanol :r3 = γ3,2 ∗ n7,2 (3)

oxygen :n6 = γ6,1 ∗ n7,1 (4)

Additionally the relations

γ2,1 = 12− Cr ∗ (γ6,1 − 12) (5)

and

γ3,2 = Cm∗ (Ck + γ2,2 ∗ Cl) (6)

are derived from atomic balances of R1 and R2. The con-
stants Ck, Cl, Cm and Cr are introduced to facilitate readabil-
ity of the equations derived from the atomic balances. Their
values depend on the composition of biomass as it is noted
in Appendix B. In this system of equations (Eqs. (1)–(6))
6 unknowns (n7,1, n7,2, γ 2,1, γ 6,1, γ 2,2, γ 3,2) occur. A re-
sulting set of values for these unknowns could not be found
due to a singular Jacobian matrix. Thus, the coefficientsγ i,j
cannot be estimated with the on-line available measurements
of carbon dioxide, ethanol, oxygen and sugar. Consequently
the selectivity of sucrose, represented by the subdivision of
total fed sugarn7 into the flow of sugar reacting via R1 (n7,1)
and R2 (n7,2), cannot be calculated as well. This concerns
in particular the prediction of these variables. Therefore, a
process model reposing upon the coefficientsγ i,j of R1 and
R2 cannot be employed in a predictive controller.

Instead, the process model is derived from a summarising
description of main process behaviour, giving just the mini-
mum of information required for adequate control. Respec-
tively, only essential process features will be represented by
the model. They can be expressed by the following process
knowledge:
• biomass takes up a flow of sugar (n7,a) for maintenance

of cell-activity and growth.
• biomass transforms a surplus flow of sugar (n7,b) into

ethanol.
In fact this is a more ‘biological’ process description

of macroscopic organism behaviour compared to the rather
‘chemical’ one — describing components transformation as
reaction scheme — implied by R1 and R2. In particular,
transformation of sugar into ethanol is no longer considered
to be linked with further production of biomass.

With the aim of avoiding the estimation of biomass and
respiratory capacity it is supposed that the flow of sugar
taken up for maintenance of cell-activity and growthn7,a is
proportional to oxygen consumptionn6:

n7,a = λ6 ∗ n6 (7)
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Hereby the kinetics of yeast growth and the actual growth
rate are inherently taken into account. Note that for the con-
sidered state ‘production of ethanol’n7,a does not depend on
the future set-point profile, so that the prediction ofn7,a can
be achieved by extrapolation of an empirical law. For this
study experimental evidence has shown that the following
polynomial type is appropriate

n7,a = λ6 ∗
∑

ai ∗ di, i = 0,1,2, . . . , k (8)

The parametersai of Eq. (8) are identified on-line at each
sampling period for a set of past values ofn6, respectively,d
being the number-relative to the current sampling period-of
the past or future cycle at whichn6 has been measured or is
to be predicted for. Parameterk has to be chosen according
to the expected evolution ofn6 during culture growth.

The flow of sugar transformed into ethanol is expressed
by

n3 = λ3 ∗ n7,b (9)

with

n3 = r3 + n3,l (10)

Nomenclature of partial sugar flows has been changed from
n7,1/n7,2 to n7,a/n7,b to indicate that they do not refer to the
reaction scheme R1/R2. Respectively,λ3 and λ6 are em-
pirical parameters and have to be determined a priori or
estimated on-line.

The ethanol loss flown3,1 results from aeration of the
bioreactor and is calculated as product of air outlet stream
and ethanol concentrationC3,s in the gaseous phase.

n3,l = vs ∗ C3,s (11)

The value ofC3,s is provided by a database according to
the respective operating conditions. This database was build
up by measuringC3,s for a set of experiments, covering the
relevant operating conditions.

2.1. Model error compensation

Since appropriate values ofλ3 andλ6 have to be deter-
mined empirically, a model mismatch caused by the choice
of these variables is quite probable. Therefore, a model error
compensation has been implemented to cope with this prob-
lem. Any error caused by the choice ofλ3 andλ6 will result
in inequality between the quantity of ethanol predicted to
be present in the reactor at a future point of timet+1t and
the quantity that will have been measured after the time in-
crement1t has passed by. This inequality can be taken into
consideration by introducing a coefficientf3:

1N3,mes= f3 ∗1N3,p (12)

By attributing any model error to the initial choice ofλ3 the
model error can be compensated by calculating:

λ3 = f3 ∗ λ3,0 (13)

Fig. 1. Summary of the process model.

The process model is summarised in Fig. 1.

3. The predictive controller

Predictive control has shown very good results in various
applications [8–10]. Its success led to the development of a
certain number of different algorithms [11]. They all consist
of the same three basic elements:
1. a dynamic model for the on-line simulation (prediction)

of the future system behaviour.
2. a reference trajectoryCCC3,r(d) which describes the smooth

transition of the target variable from its current value
to the future set-point profileCCC3,sp(d) within a horizon
of prediction Hpy. This trajectory can be interpreted as
desired behaviour of the closed loop system.

3. an objective criterionJ(nnn7,eee) as a function of the future
values of the manipulated variablennn7(d) and the future
controller erroreee(d).

By means of the objective criterion an optimal profile for
the future values of the manipulated variable

nnn7,opt(d) = [n7(d), n7(d + 1), . . . , n7(d + nu)] (14)

is calculated for the horizon of prediction of the manipulated
variable Hpu that guides the predicted target variable as close
as possible to the reference trajectory. It is

nu = Hpu

1t
(15)

and

1t = t (d + 1)− t (d) (16)

This calculation is based on:
• the future values of the target variable predicted by the

dynamic model

CCC3,p(d)=[C3,p(d), C3,p(d + 1), . . . , C3,p(d + ny)] (17)
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Fig. 2. Principle of predictive control.

with

ny = Hpy

1t
(18)

• a given set-point profile

CCC3,sp(d)= [C3,sp(d), C3,sp(d + 1),

. . . , C3,sp(d + ny)] (19)

• and the future controller error

eee(n) = [1C3(d),1C3(d + 1), . . . 1C3(d + ny)] (20)

with

1C3(d + j) = [C3,r(d + j)− C3,p(d + j)] (21)

as depicted in Fig. 2.
For each period1t a value of the future manipulated vari-

able will have to be calculated. Consequently nu values have
to be determined for the optimal profile. In practical appli-
cations nu typically ranges from 20 to 50, therefore it will be
difficult to calculate the optimal profile analytically. Instead,
in standard predictive control algorithms the objective cri-
terion is introduced. Its numerical minimisation leads to the
optimal profile of the manipulated variable. Its first element
n7,opt(d) is applied on the process. After a one step shift of
the data arrays the calculation is repeated with a new set of
process measures at the next period.

In the present case the control algorithm provides the fu-
ture values of the manipulated variablen7 so that the process
follows a given set-point profileC3,sp of the target variable
C3 (ethanol concentration in the liquid holdup). According
to the process model the future manipulated variablen7 is

n7(d + j) = n7,a(d + j)+ n7,b(d + j) (22)

wheren7,a(d+j) is already known by extrapolating Eq. (8)

n7,a(d + j)= λ6 ∗
∑

ai ∗ (d + j)i,

i = 0,1,2, . . . , k (23)

Likewisen7,b is represented by a polynomial law. This cor-
responds to structuring the manipulated variable as it has
been proposed by Richalet [12].

n7,b(d + j) =
∑

bi ∗ (d + j)i, i = 0,1,2, . . . , m (24)

The parametermhas to be chosen according to the expected
evolution ofn7,b during culture growth. Eq. (24) determines
the structure ofn7,b so only the coefficientsbi have to be
calculated in order to obtain the future manipulated variable.

By introducing Eqs. (10) and (24) in Eq. (9) and integrat-
ing the resulting equation we obtain the control law:

N3,p(d + Pc)+N3,l,p(d + Pc) = λ3 ∗
∑(

1

i + 1

)
∗bi ∗ (d + Pc)i+1, i = 1,2, . . . , m (25)

With the aim of determining the parametersbi the control
law (25) is solved for each point of coincidence Pc. A point
of coincidence is understood as a future point of time where
the process state matches the desired evolution. The solu-
tion of Eq. (25) requires the prediction of the future ethanol
lossN3,l,p(d+Pc) via the air-outlet flow (see Appendix A)
and the prediction of the quantity of ethanol in the liquid
holdup at a future point of timeN3,p(d+Pc). The reference
trajectoryC3,r(d+Pc) (see Appendix A) represents the de-
sired future evolution of ethanol concentration. Supposing
the future ethanol concentration to match the desired evolu-
tion, N3,p(d+Pc) can be calculated by:

N3,p(d + Pc) = C3,r(d + Pc) ∗ Vp(d + Pc) (26)

The prediction of the future holdup volume is

Vp(d + Pc)=V (d)+1V7,a(d + Pc)+1V7,b(d + Pc) (27)

where1V7,a and1V7,b correspond to the increase of holdup
volume due to the future flow of sugar. The calculation of
these variables is reported in Appendix A.

The unknown parametersbi of Eq. (25) are calculated
by introducingm+1 points of coincidence on the reference
trajectory. Since the reference trajectory is the desired fu-
ture evolution of the process, Eq. (25) has to be fulfilled for
every point of coincidence. By setting up Eq. (25) for ev-
ery point of coincidence we obtain a system ofm+1 linear
equations. In generalm+1 is significantly inferior to nu, so
that the parametersbi are available analytically for linear
process models by solving the system ofm+1 equations.
This is an advantage compared to standard predictive con-
trol because no objective criterion has to be resolved by a
numerical optimisation method which would require inten-
sive calculation while convergence to the global minimum
is not always guaranteed.

4. Experimental

The experiments have been carried out on an industrial
pilot plant in fed-batch mode. The controller has been im-
plemented as independent application, providing at the same
time a software-interface that integrates the controller into
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Fig. 3. General principle of a fed-batch bioreactor.

the supervision system (MFCS/win, B. Braun Biotech lnter-
national GmbH) of the industrial site.

As it is depicted in Fig. 3, sugar is fed by pump P1. Aera-
tion of the bioreactor is assured by an air-stream through the
reactor. Its evolution as a function of time is pre-determined
by experience and managed by the supervision system. Oxy-
gen concentration in the gaseous phase is measured at inlet
and outlet. Ethanol concentration is obtained using a probe
immersed into the liquid holdup. These concentrations are
measured on-line.

The system with closed control loop is depicted in Fig. 4.
For a given set-point of ethanol concentration the controller
computes the required feed of sugarFsa which is an aqueous
solution of the sucrose flown7 computed by the controller.
The conversion ofn7 to Fsa is reported in Appendix C. The
feed of sugarFsa is then applied to the process. Resulting
ethanol concentration is measured and fed back to the con-
troller.

In the following all values Wi,r referring to x- or
y-axis are reduced with respect to a reference value
(Wi,r=Wi,mes/Wi,ref). Unit of x-axis is always reduced time
tr. As air-flow its output value is given which nearly equals
the input flow.

Fig. 5 shows fed-batch growth ofS. cerevisiaewith a
constant set-point. No model error compensation has been
active. Thus, model mismatch leads to a continuously in-
creasing control error, up to 3%. Nevertheless, the distur-
bance caused by varying air-flow which affects ethanol loss
through the gaseous phase is quite well rejected.

Fig. 6 depicts the effects of model error compensation. In
a first time the controller is operating with the same config-
uration as in Fig. 5 and control error increases continuously,
up to 2.08%.

Fig. 4. Closed control loop.

Fig. 5. Ethanol concentration, sugar- and air-during fed-batch growth
(without model error compensation).

Fig. 6. Ethanol concentration, sugar- and air-flow during fed-batch growth
(with model error compensation).

At tr=0.45 model error compensation is activated with-
out docking procedure. Therefore, the manipulated variable
changes abruptly but continues to grow steadily until fur-
ther disturbance is introduced by varying air-flow. In general
system behaviour becomes more oscillating as it is shown
by evolution of error compensation coefficientf3 in Fig. 7.
However, this does not effect the performance of model er-
ror compensation and average control error is reduced to
0.02%.

Fig. 7. Evolution of model error compensation coefficientf3.
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According to Eq. (12) coefficientf3 represents the mis-
match between the quantity of ethanol in the mixture pre-
dicted by the process model and the measured value. Sup-
posing the structure of the process model to be appropriate,
any deviation off3 from the unity means that model parame-
ters have not been set to the right values. Therefore, the step
of f3 from 1.0 to 0.32 when activating model error compen-
sation indicates that the choice of model parametersλ3 and
λ6 has not been close to their actual values.

5. Discussion and conclusion

Predictive control of ethanol production during fed-batch
yeast growth was based on a process model containing a
simplified biochemical reaction description. The influence
of biomass growth is introduced by oxygen uptake. This of-
fers, in a first time, the advantage that no biomass estimation
is necessary. Secondly, the fact that growth of yeast might
be limited either by sugar supply or oxygen transfer capacity
of the bioreactor is inherently taken into consideration. As a
resuming conclusion, control of a constant set-point profile
was well achieved for a wide range of system state evolu-
tion. The implemented model error compensation dealt out
to be quite effective, so that precise knowledge of model
parameters is not necessarily required a priori. On the other
hand the controller becomes more sensible to disturbances
which will be subject to further improvement. This might be
achieved by replacing the model error compensation based
on the coefficientf3 by an approach for on-line estimation
of the model parametersλ3 andλ6.

Further research will also be directed to the extension of
the process model and the control algorithm to the oxida-
tion of ethanol in order to be able to apply the entire process
control strategy described in introduction. Moreover, the op-
timisation of the set-point profile will be subject to future
work.

6. Nomenclature

1 increment
ε parameter of reference trajectory
γ stoechiometric coefficient
λ specific uptake coefficient
a polynomial coefficient
b polynomial coefficient
C concentration (mol/m3)
d process time given in number of cycles
e control error
f coefficient
F feed (kg/s)
Hp horizon of predictions (s)
J objective criterion
K specific transformation coefficient

from mol to m3 (m3/mol)

n molar flow (mol/s)
nu number of periods comprised in the horizon of

prediction of the manipulated variable
ny number of periods comprised in the horizon

of prediction
N quantity (mol)
Pc point of coincidences (s)
r accumulation rate in holdup (mol/s)
S set-point
t times (s)
u manipulated variable
v volumetric flow (m3/s)
V volume (m3)
y target variable

Indices
0 initial
a maintenance of cell-activity and reproduction
b transformation of sugar into ethanol
e inlet
i components index;i=1, biomass;i=2, carbon

dioxide; i=3, ethanol;i=4, water;i=5, ammonia;
i=6, oxygen;i=7, sucrose

i,j components index, reaction index;j=1, reaction
R1; j=2, reaction R2;j=3, reaction R3

l loss
mes measured
opt optimal
p prediction
r reference
ref reference for reduced values
s outlet
sa sugar
sp set-point
t total
u manipulated variable
y target variable
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Appendix A. Formulae

N3,l,p(d + Pc) =
∫ d+Pc

d

vs ∗ C3,s(τ )dτ (A.1)

The first order exponential reference trajectoryC3,r(d+Pc)
is given by:

C3,r(d + Pc)=C3(d)+ [C3,sp(d + Pc)− C3(d)] ∗ ψ (A.2)

with
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ψ =
[

1 − exp

(
Pc∗ ln(1 − ε)

Hpy

)]
(A.3)

and

ε = C3,r(d + HPy)

C3,sp(d + HPy)
, ε < 1 (A.4)

A constant value ofε=0.95 has been chosen a priori. This
corresponds to a first order model witht95% equal to Hpy
(t95% corresponding to the time when the model output
matches 95% of the total variation after a change in input).

1V7,a =K ∗ λ6 ∗
∫ d+Pc

d

∑
ai ∗ τ i dτ,

i = 0,1,2, . . . , k (A.5)

1V7,b =K ∗
∫ d+Pc

d

∑
bi ∗ τ idτ,

i = 0,1,2, . . . , m (A.6)

Eq. (A.6) can be transformed to

1V7,b = K ∗
∑ bi

(1 + i)
∗ [(d + Pc)i+1 − t i+1] (A.7)

Appendix B. Constants

Bio biomass: CHα1 Oα2 Nα3 (mol); α1=1.68,
α2=0.54,α3=0.14

Ck −2.16
Cl 4.18
Cm 3.64
Cr −0.9569

Ck = 22+ 12∗ (3 ∗ α2 − α1)− 2 ∗ (11− 12∗ α3) (B.1)

Cl = 2 ∗ (2 − α3)− (3 ∗ α2 − α1) (B.2)

Cm = 6 + 2 ∗ (3 ∗ α2 − α1)− 2 ∗ (1 − 2 ∗ α3) (B.3)

Cr = 4

α2 ∗ (3 − α1/α2 − 2 ∗ (2/α2 − α3/α2))
(B.4)

Appendix C. Conversion of sugar feed

Fsa = n7

xsa
∗Msa (C.1)

Mass fraction of sucrose in the feed:

xsa= 0.222.

Molar weight of sucrose:

Msa = 0.342 kg/mol.
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